PREGLED OBLASTI PRIMENE MODELA SWMM KOD IMPLEMENTACIJE LID TEHNOLOGIJA

Jelena Dimitrijević ,
Jelena Dimitrijević
Dragan Milićević ,
Dragan Milićević
Zlatko Zafirovski
Zlatko Zafirovski

Published: 01.12.2022.

Volume 25, Issue 1 (2022)

pp. 129-136;

https://doi.org/10.62683/nip25.129-136

Abstract

Potreba za elementima Zelene gradnje se javlja usled prekomerne urbanizacije i globalnog zagađenja. Elementi LID (Low Impact Development) tehnologija, kao jedno od rešenja ovih problema nastoje da upravljanjem atmosferskim vodama imitiraju prirodne hidrološke cikluse odgovarajućeg područja. Ova rešenja su dala izuzetne rezultate što se može potvrditi kroz mnogo radova studija slučaja. Kod ovakvih tehnologija predviđanje samih rešenja i simulacije rada istih je moguće samo putem odgovarajućeg softvera. Agencija za zaštitu životne sredine Sjedinjenih Američkih Država je 1971. godine razvila javno dostupan softver SWMM (Storm Water Management Model), za potrebe simuliranja kvantiteta i kvaliteta oticaja u urbanim područjima. Od svog nastanka pa do danas, SWMM je doživeo nekoliko tranformacija čija je verifikacija izvršena kroz konkretne studije slučaja. Rad prikazuje područja primene SWMM modela kroz implementaciju LID tehnologija. Pregled je izvršen ne samo prema oblastima primene, tipu LID tehnike već i kroz istorijski razvoj samog softvera i sve njegove modifikacije.

Keywords

References

Malmo, N., & Praksa. (2017). 13–19.
Trajkovic, S., Milicevic, D., Milanovic, M., & Gocic, M. (2022). Application of Different LID Technologies for the Drainage of Urban Areas: A Case Study—Pek Settlement, Serbia. In Advances in Science, Technology & Innovation (pp. 493–495). Springer International Publishing. https://doi.org/10.1007/978-3-030-72543-3_111
Milicevic, D., Andjelkovic, L., & Mitic, M. (2015). The necessity of the integral way of stormwater planning and management with a focus to the city of Pirot. Tehnika, 70(6), 1065–1072. https://doi.org/10.5937/tehnika1506065m
Zhang, K., & Chui, T. F. M. (2020). Assessing the impact of spatial allocation of bioretention cells on shallow groundwater – An integrated surface-subsurface catchment-scale analysis with SWMM-MODFLOW. Journal of Hydrology, 586, 124910. https://doi.org/10.1016/j.jhydrol.2020.124910
Milicevic, D., Mitic, M., & Bjeletic-Antic, D. (2017). Methodology of sensitive planning and design of stormwater drainage system on urban watersheds. Tehnika, 72(2), 303–308. https://doi.org/10.5937/tehnika1702303m
Trajkovic, S., Milicevic, D., Milanovic, M., & Gocic, M. (2020). Comparative study of different LID technologies for drainage and protection of atmospheric stormwater quality in urban areas. Arabian Journal of Geosciences, 13(20). https://doi.org/10.1007/s12517-020-06093-0
Eckart, K., McPhee, Z., & Bolisetti, T. (2017). Performance and implementation of low impact development – A review. Science of The Total Environment, 607–608, 413–432. https://doi.org/10.1016/j.scitotenv.2017.06.254
Islam, A., Hassini, S., & El-Dakhakhni, W. (2021). A systematic bibliometric review of optimization and resilience within low impact development stormwater management practices. Journal of Hydrology, 599, 126457. https://doi.org/10.1016/j.jhydrol.2021.126457
Shahed Behrouz, M., Zhu, Z., Matott, L. S., & Rabideau, A. J. (2020). A new tool for automatic calibration of the Storm Water Management Model (SWMM). Journal of Hydrology, 581, 124436. https://doi.org/10.1016/j.jhydrol.2019.124436
van der Sterren, M., Rahman, A., & Ryan, G. (2014). Modeling of a lot scale rainwater tank system in XP-SWMM: A case study in Western Sydney, Australia. Journal of Environmental Management, 141, 177–189. https://doi.org/10.1016/j.jenvman.2014.02.013
Taghizadeh, S., Khani, S., & Rajaee, T. (2021). Hybrid SWMM and particle swarm optimization model for urban runoff water quality control by using green infrastructures (LID-BMPs). Urban Forestry & Urban Greening, 60, 127032. https://doi.org/10.1016/j.ufug.2021.127032
Shojaeizadeh, A., Geza, M., & Hogue, T. S. (2021). GIP-SWMM: A new Green Infrastructure Placement Tool coupled with SWMM. Journal of Environmental Management, 277, 111409. https://doi.org/10.1016/j.jenvman.2020.111409
Wang, Z., Li, S., Wu, X., Lin, G., & Lai, C. (2022). Impact of spatial discretization resolution on the hydrological performance of layout optimization of LID practices. Journal of Hydrology, 612, 128113. https://doi.org/10.1016/j.jhydrol.2022.128113
Heidari, B., Schmidt, A. R., & Minsker, B. (2022). Cost/benefit assessment of green infrastructure: Spatial scale effects on uncertainty and sensitivity. Journal of Environmental Management, 302, 114009. https://doi.org/10.1016/j.jenvman.2021.114009
Weathers, M., Hathaway, J. M., Tirpak, R. A., & Khojandi, A. (2023). Evaluating the impact of climate change on future bioretention performance across the contiguous United States. Journal of Hydrology, 616, 128771. https://doi.org/10.1016/j.jhydrol.2022.128771
Lewis, R., & A. (2015).
Yang, Y., Li, J., Huang, Q., Xia, J., Li, J., Liu, D., & Tan, Q. (2021). Performance assessment of sponge city infrastructure on stormwater outflows using isochrone and SWMM models. Journal of Hydrology, 597, 126151. https://doi.org/10.1016/j.jhydrol.2021.126151
Niazi, M., Nietch, C., Maghrebi, M., Jackson, N., Bennett, B. R., Tryby, M., & Massoudieh, A. (2017). Storm Water Management Model: Performance Review and Gap Analysis. Journal of Sustainable Water in the Built Environment, 3(2). https://doi.org/10.1061/jswbay.0000817
(2000).
Shamsi, U. M., & Koran, J. (2017). Continuous Calibration. Journal of Water Management Modeling. https://doi.org/10.14796/jwmm.c414
Alamdari, N. (2016). Development of a Robust Automated Tool for Calibrating a SWMM Watershed Model. In World Environmental and Water Resources Congress 2016 (pp. 221–228). American Society of Civil Engineers. https://doi.org/10.1061/9780784479841.025
Randall, M., Sun, F., Zhang, Y., & Jensen, M. B. (2019). Evaluating Sponge City volume capture ratio at the catchment scale using SWMM. Journal of Environmental Management, 246, 745–757. https://doi.org/10.1016/j.jenvman.2019.05.134
Sañudo-Fontaneda, L. A., Jato-Espino, D., Lashford, C., & Coupe, S. J. (2017). Simulation of the hydraulic performance of highway filter drains through laboratory models and stormwater management tools. Environmental Science and Pollution Research, 25(20), 19228–19237. https://doi.org/10.1007/s11356-017-9170-7
Macro, K., Matott, L. S., Rabideau, A., Ghodsi, S. H., & Zhu, Z. (2019). OSTRICH-SWMM: A new multi-objective optimization tool for green infrastructure planning with SWMM. Environmental Modelling & Software, 113, 42–47. https://doi.org/10.1016/j.envsoft.2018.12.004
Lisenbee, W. A., Hathaway, J. M., & Winston, R. J. (2022). Modeling bioretention hydrology: Quantifying the performance of DRAINMOD-Urban and the SWMM LID module. Journal of Hydrology, 612, 128179. https://doi.org/10.1016/j.jhydrol.2022.128179
Kim, H., Mallari, K. J. B., Baek, J., Pak, G., Choi, H. I., & Yoon, J. (2019). Considering the effect of groundwater on bioretention using the Storm Water Management Model. Journal of Environmental Management, 231, 1270–1276. https://doi.org/10.1016/j.jenvman.2018.03.032
Yang, Y., Li, Y., Huang, Q., Xia, J., & Li, J. (2023). Surrogate-based multiobjective optimization to rapidly size low impact development practices for outflow capture. Journal of Hydrology, 616, 128848. https://doi.org/10.1016/j.jhydrol.2022.128848
Yu, Y., Zhou, Y., Guo, Z., van Duin, B., & Zhang, W. (2022). A new LID spatial allocation optimization system at neighborhood scale: Integrated SWMM with PICEA-g using MATLAB as the platform. Science of The Total Environment, 831, 154843. https://doi.org/10.1016/j.scitotenv.2022.154843
Chuang, W.-K., Lin, Z.-E., Lin, T.-C., Lo, S.-L., Chang, C.-L., & Chiueh, P.-T. (2023). Spatial allocation of LID practices with a water footprint approach. Science of The Total Environment, 859, 160201. https://doi.org/10.1016/j.scitotenv.2022.160201
Bibi, T. S. (2022). Modeling urban stormwater management in the town of Dodola based on landuse and climate change using SWMM 5.1. Journal of Hydrology: Regional Studies, 44, 101267. https://doi.org/10.1016/j.ejrh.2022.101267
Li, S., Wang, Z., Wu, X., Zeng, Z., Shen, P., & Lai, C. (2022). A novel spatial optimization approach for the cost-effectiveness improvement of LID practices based on SWMM-FTC. Journal of Environmental Management, 307, 114574. https://doi.org/10.1016/j.jenvman.2022.114574
Mantilla, I., Flanagan, K., Muthanna, T. M., Blecken, G.-T., & Viklander, M. (2023). Variability of green infrastructure performance due to climatic regimes across Sweden. Journal of Environmental Management, 326, 116354. https://doi.org/10.1016/j.jenvman.2022.116354
Cipolla, S. S., Maglionico, M., & Stojkov, I. (2016). A long-term hydrological modelling of an extensive green roof by means of SWMM. Ecological Engineering, 95, 876–887. https://doi.org/10.1016/j.ecoleng.2016.07.009
Baek, S., Ligaray, M., Pachepsky, Y., Chun, J. A., Yoon, K.-S., Park, Y., & Cho, K. H. (2020). Assessment of a green roof practice using the coupled SWMM and HYDRUS models. Journal of Environmental Management, 261, 109920. https://doi.org/10.1016/j.jenvman.2019.109920
Hamouz, V., & Muthanna, T. M. (2019). Hydrological modelling of green and grey roofs in cold climate with the SWMM model. Journal of Environmental Management, 249, 109350. https://doi.org/10.1016/j.jenvman.2019.109350
Akter, A., Tanim, A. H., & Islam, Md. K. (2020). Possibilities of urban flood reduction through distributed-scale rainwater harvesting. Water Science and Engineering, 13(2), 95–105. https://doi.org/10.1016/j.wse.2020.06.001
Simon, D.-V., Daniel, G., & Jill, E. (n.d.).

Citation

Copyright

Article metrics

Google scholar: See link

The statements, opinions and data contained in the journal are solely those of the individual authors and contributors and not of the publisher and the editor(s). We stay neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Most read articles